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1

Introduction

Ever since Euclid, the interaction of light with matter has aroused interest– at least
among poets, painters, and physicists. This interest stems not so much from our
curiosity about materials themselves, but rather to applications, should it be the
exploration of distant stars, the burning of ships of ill intent, or the discovery of
new paint pigments.

It was only with the advent of solid state physics about a century ago that this
interaction was used to explore the properties of materials in depth. As in thefield
of atomic physics, in a short period of time optics has advanced to become a major
tool of condensed matter physics in achieving this goal, with distinct advantages
– and some disadvantages as well– when compared with other experimental tools.

The focus of this book is on optical spectroscopy, defined here as the information
gained from the absorption, reflection, or transmission of electromagnetic radia-
tion, including models which account for, or interpret, the experimental results.
Together with other spectroscopic tools, notably photoelectron and electron energy
loss spectroscopy, and Raman together with Brillouin scattering, optics primarily
measures charge excitations, and, because of the speed of light exceeding sub-
stantially the velocities of various excitations in solids, explores in most cases
the �q = 0 limit. While this is a disadvantage, it is amply compensated for
by the enormous spectral range which can be explored; this range extends from
well below to well above the energies of various single-particle and collective
excitations.

The interaction of radiation with matter is way too complex to be covered by
a single book; so certain limitations have to be made. The response of a solid at
positionr and timet to an electricfield E(r ′, t ′) at positionr ′ and timet ′ can be
written as

Di (r , t) =
∫ ∫

¯̄ε i j (r , r ′, t, t ′)Ej (r ′, t ′)dt ′ dr ′ (1.0.1)

1



2 1 Introduction

where i and j refer to the components of the electricfield E and displacement
field D; thus ¯̄ε i j is the so-called dielectric tensor. For homogeneous solids, the
response depends only onr − r ′ (while time is obviously a continuous variable),
and Eq. (1.0.1) is reduced to

Di (r , t) =
∫ ∫

¯̄ε i j (r − r ′, t − t ′)Ej (r ′, t ′)dt ′ dr ′ . (1.0.2)

We further assume linear response, thus the displacement vectorD is proportional
to the applied electricfieldE. In the case of an alternating electricfield of the form

E(r , t) = E0 exp{i(q · r − ωt)} (1.0.3)

the response occurs at the same frequency as the frequency of the appliedfield with
no higher harmonics. Fourier transform then gives

Di (q, ω) = ¯̄ε i j (q, ω)Ej (q, ω) (1.0.4)

with the complex dielectric tensor assuming both a wavevector and frequency
dependence. For̄̄ε i j (r − r ′, t − t ′) real, theq andω dependent dielectric tensor
obeys the following relation:

¯̄ε i j (r − r ′, t − t ′) = ¯̄ε∗i j (r − r ′, t − t ′) ,

where the star (∗) refers to the complex conjugate. Only cubic lattices will be
considered throughout most parts of the book, and thenε̂ is a scalar, complex
quantity.

Of course, the response could equally well be described in terms of a current at
positionr and timet , and thus

J(r , t) =
∫ ∫

σ̂ (r , r ′, t, t ′)E(r ′, t ′)dt ′ dr ′ (1.0.5)

leading to a complex conductivity tensorσ̂ (q, ω) in response to a sinusoidal time-
varying electricfield. The two response functions are related by

ε̂(q, ω) = 1+ 4π i

ω
σ̂ (q, ω) ; (1.0.6)

this follows from Maxwell’s equations.
Except for a few cases we also assume that there is a local relationship between

the electricfieldE(r , t) andD(r , t) and alsoj(r , t), and while these quantities may
display well defined spatial dependence, their spatial variation is identical; with

J(r)
E(r)

= σ̂ and
D(r)
E(r)

= ε̂ (1.0.7)

two spatially independent quantities. This then means that the Fourier transforms
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of ε̂ and σ̂ do not haveq �= 0 components. There are a few notable exceptions
when some important length scales of the problem, such as the mean free path


in metals or the coherence lengthξ0 in superconductors, are large and exceed the
length scales set by the boundary problem at hand. The above limitations then
reduce

σ̂ (ω) = σ1(ω)+ iσ2(ω) and ε̂(ω) = ε1(ω)+ iε2(ω) (1.0.8)

to scalar andq independent quantities, with the relationship betweenε̂ and σ̂ as
given before. We will also limit ourselves to non-magnetic materials, and will
assume that the magnetic permeabilityµ1 = 1 with the imaginary partµ2 = 0.

We will also make use of what is called the semiclassical approximation. The
interaction of chargeei with the radiationfield is described as the Hamiltonian

H = 1

2m

∑
i

[
pi − ei

c
A(r i )

]2
, (1.0.9)

and while the electronic states will be described by appropriatefirst and second
quantization, the vector potentialA will be assumed to represent a classicalfield.
We will also assume the so-called Coulomb gauge, by imposing a condition

∇ · A = 0 ; (1.0.10)

this then implies thatA has only transverse components, perpendicular to the
wavevectorq.

Of course one cannot do justice to all the various interesting effects which arise
in the different forms of condensed matter– certain selections have to be made,
this being influenced by our prejudices. We cover what could loosely be called the
electrodynamics of electron states in solids. As the subject of what can be termed
electrodynamics is in fact the response of charges to electromagneticfields, the
above statement needs clarification. Throughout the book our main concern will
be the optical properties of electrons in solids, and a short guide of the various
states which may arise is in order.

In the absence of interaction with the underlying lattice, and also without
electron–electron or electron–phonon interactions, we have a collection of free
electrons obeying– at temperatures of interest– Fermi statistics, and this type
of electron liquid is called a Fermi liquid. Interactions between electrons then lead
to an interacting Fermi liquid, with the interactions leading to the renormalization
of the quasi-particles, leaving, however, their character unchanged. Under certain
circumstances, notably when the electron system is driven close to an instability, or
when the electronic structure is highly anisotropic, this renormalized Fermi-liquid
picture is not valid, and other types of quantum liquids are recovered. The– not
too appealing– notion of non-Fermi liquids is usually adopted when deviations
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from a Fermi liquid are found. In strictly one dimension (for example) the nature
of the quantum liquid, called the Luttinger liquid, with all of its implications,
is well known. Electron–phonon interactions also lead to a renormalized Fermi
liquid.

If the interactions between the electrons or the electron–phonon interactions are
of sufficient strength, or if the electronic structure is anisotropic, phase transitions
to what can be termed electronic solids occur. As is usual for phase transitions,
the ordered state has a broken symmetry, hence the name broken symmetry states
of metals. For these states, which are called charge or spin density wave states,
translational symmetry is broken and the electronic charge or spin density assumes
a periodic variation– much like the periodic arrangement of atoms in a crystal.
The superconducting state has a different, so-called broken gauge symmetry. Not
surprisingly for these states, single-particle excitations have a gap– called the
single-particle gap– a form of generalized rigidity. As expected for a phase
transition, there are collective modes associated with the broken symmetry state
which – as it turns out– couple directly to electromagneticfields. In addition, for
these states the order parameter is complex, with the phase directly related to the
current and densityfluctuations of the collective modes.

Disorder leads to a different type of breakdown of the Fermi liquid. With
increasing disorder a transition to a non-conducting state where electron states are
localized may occur. Such a transition, driven by an external parameter (ideally
at T = 0 where only quantumfluctuations occur) and not by the temperature, is
called a quantum phase transition, with the behavior near to the critical disorder
described– in analogy to thermal phase transitions– by various critical exponents.
This transition and the character of the insulating, electron glass state depend on
whether electron–electron interactions are important or not. In the latter case we
have a Fermi glass, and the former can be called a Coulomb glass, the two cases
being distinguished by temperature and frequency dependent excitations governed
by different exponents, reflecting the presence or absence of Coulomb gaps.

A different set of states and properties arises when the underlying periodic lattice
leads to full and empty bands, thus to semiconducting or insulating behavior.
In this case, the essential features of the band structure can be tested by optical
experiments. States beyond the single-electron picture, such as excitons, and also
impurity states are essential features here. All this follows from the fundamental
assumption about lattice periodicity and the validity of Bloch’s theorem. When this
is not relevant, as is the case for amorphous semiconductors, localized states with
a certain amount of short range order are responsible for the optical properties.

The response of these states to an electromagneticfield leads to dissipation,
and this is related to thefluctuations which arise in the absence of driving
fields. The relevantfluctuations are expressed in terms of the current–current
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or density–density correlation functions, related to the response through the cel-
ebratedfluctuation-dissipation theorem. The correlation functions in question can
be derived using an appropriate Hamiltonian which accounts for the essential fea-
tures of the particular electron state in question. These correlations reflect and the
dissipation occurs through the elementary excitations. Single-particle excitations,
the excitation of the individual quasi-particles, may be the source of the dissipation,
together with the collective modes which involve the cooperative motion of the
entire system governed by the global interaction between the particles. Electron–
hole excitations in a metal are examples of the former, plasmons and the response
of the broken symmetry ground state are examples of the latter. As a rule, these
excitations are described in the momentum space by assuming extended states and
excitations with well defined momenta. Such excitations may still exist in the case
of a collection of localized states; here, however, the excitations do not have well
defined momenta and thus restrictions associated with momentum conservation do
not apply.

Other subjects, interesting in their own right, such as optical phonons, di-
electrics, color centers (to name just a few) are neglected; and we do not discuss
charge excitations in insulators– vast subjects with interesting properties. Also
we do not discuss the important topic of magneto-optics or magneto-transport
phenomena, which occur when both electric and magneticfields are applied.

The organization of the book is as follows: underlying theory, techniques, and
experimental results are discussed as three, inter-relating parts of the same en-
deavor. In Part 1 we start with the necessary preliminaries: Maxwell’s equations
and the definition of the optical constants. This is followed by the summary of
the propagation of light in the medium, and then by the discussion of phenomena
which occur at an interface; thisfinally brings us to the optical parameters which
are measured by experiment. The three remaining chapters of Part 1 deal with the
optical properties of metals, semiconductors, and the so-called broken symmetry
states of metals. Only simple metals and semiconductors are dealt with here, and
only the conventional broken symmetry states (such as BCS superconductors) will
be covered in the so-called weak coupling limit. In these three chapters three
different effects are dominant: dynamics of quasi-free electrons, absorption due
to interband processes, and collective phenomena.

In Part 2 the experimental techniques are summarized, with an attempt to bring
out common features of the methods which have been applied at vastly different
spectral ranges. Here important similarities exist, but there are some important
differences as well. There are three spectroscopic principles of how the response
in a wide frequency range can be obtained: measurements can be performed in the
frequency domain, the time domain, or by Fourier transform technique. There are
also different ways in which the radiation can interact with the material studied:



6 1 Introduction

simply transmission or reflection, or changes in a resonance structure, can be
utilized.

In Part 3 experimental results are summarized and the connection between the-
ory and experiment is established. Wefirst discuss simple scenarios where the
often drastic simplifications underlying the theories are, in the light of experiments,
justified. This is followed by the discussion of modern topics, much in the limelight
at present. Here also some hand-waving arguments are used to expound on the
underlying concepts which (as a rule) by no means constitute closed chapters of
condensed matter physics.




